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e Principle of sensor array imaging:

- probe an unknown medium with waves,

- record the waves transmitted through or reflected by the medium,

- process the recorded data to extract relevant information about some features of the

medium.
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Reflector imaging through a homogeneous medium
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e Sensor array imaging of a reflector located at y. @5 is a source, &, is a receiver.
Measured data: {u(t,@,;&s),r=1,...,Ny,s=1,..., Ng}.

e Mathematical model:

1 1 DN & L - L
(C_ —1_ CTlBref (a3 o y)) _u(t? w; ms) o A{E’U(t, a}; ms) — f(t)é(w B ws)
0

e Purpose of imaging: using the measured data, build an imaging function Z(%°) that

would ideally look like 621 1B, (y_’s — 9), in order to extract the relevant information

re

(Y, Bret, cror) about the reflector.
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e Classical imaging functions:

1) Least-Squares imaging: minimize the quadratic misfit between measured data and

synthetic data obtained by solving the wave equation with a candidate

=
(ytest 3 Btest 3 Ctest ) .

2) Reverse Time imaging: simplify Least-Squares imaging by “linearization” of the

forward problem.

3) Kirchhoff Migration: simplify Reverse Time imaging by substituting travel time

migration for full wave equation.
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e Classical imaging functions:

1) Least-Squares imaging: minimize the quadratic misfit between measured data and

synthetic data obtained by solving the wave equation with a candidate
(gtest, Btest, Ctest)-
2) Reverse Time imaging: simplify Least-Squares imaging by “linearization” of the

forward problem.

3) Kirchhoff Migration: simplify Reverse Time imaging by substituting travel time

migration for full wave equation.

e Kirchhoftf Migration function:

N, Ng

Tkm(57) =D Y u(T( &, 9°) + T (G, &), &; Ls )

r=1 s=1

It forms the image with the superposition of the backpropagated traces.

T (§°, &) is the travel time from & to %°, i.e. T(¢°, &) = |¢°> — &|/co.

- Very robust with respect to measurement noise [1].

- Sensitive to clutter noise (due to scattering medium): If the medium is scattering,

then Kirchhoff Migration (usually) does not work.

[1] H. Ammari, J. Garnier, and K. Sglna, Wawves in Random and Complex Media 22, 40 (2012).



Reflector imaging through a scattering medium

e Sensor array imaging of a reflector located at y. @ is a source, &, is a receiver.
Data: {u(t,@,;@s),r=1,...,Ny,s =1,..., Ng}.

1 1 L N\O%u, _ L L
(C2 + 2 1Bref (w o y)) —(t7 £L; mS) - Aiffu(t) €I, ws) — f(t)é(m — CL'S)
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e Random medium model: 10, 0 5.‘.- - “:'
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co is a reference speed, 5 .‘._ - ““’-::T'.: > 2
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((x) is a zero-mean random process. SA < TN ,
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Imaging through a randomly scattering medium: strategy

e A multiscale analysis is possible in different asymptotic regimes (small wavelength,
large propagation distance, small correlation length, ...).

e In the limit the wave equation with random coefficients is replaced by a stochastic
partial differential equation driven by Brownian fields; for instance, an
Ito-Schrodinger equation in the paraxial regime.

e Stochastic calculus can then be used.

e Compute the mean and variance of an imaging function Z(%°).

— resolution and stability analysis.

e The mean imaging function ¢° — E|Z (§° )| characterizes the precision in the
localization and characterization of the reflector (resolution).

e Criterium for statistical stability:

E[Z(y")]

SNR :=
Var (I(gjs)) 1/2

> 1

— design the imaging function to get good trade-off between stability and resolution.
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e General results obtained by a multiscale analysis.

e The mean wave is small while the wave fluctuations are large.
—> The Kirchhoff Migration function (or Reverse Time imaging function) is unstable

in randomly scattering media.

e The wave fluctuations at nearby points and nearby frequencies are correlated. The
wave correlations carry information about the medium.

—> One can use local cross correlations for imaging.

e More detailed results depend on the scattering regime.
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Wave propagation in the random paraxial regime

e Consider the time-harmonic form of the scalar wave equation (& = (x, z))

2

(0% + AL )i+ °CJ—2 (1+ p(z, 2))0 = 0.
0

Consider the paraxial regime “A\ < [ < L”:
W 3 r =z
w—>€—4, u(x,z) — ¢ ,u(g—2,€—2)

The function ¢° (slowly-varying envelope of a plane wave) defined by

€ G e £
U (w,x,z) =€ "0 ¢ (w,—Q,z)
€

satisfies

2
e 020° + <2iﬂaqu8 + AL+ w—Qlu(az, 3)&) = 0.

Co cg € £?
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Wave propagation in the random paraxial regime

e Consider the time-harmonic form of the scalar wave equation (£ = (x, 2))

2

(02 + AL)a+ —(1 + p(zx, 2))a = 0.
€0
Consider the paraxial regime “A < [ < L”:
W 3 r =z
w—>€—4, u(x,z) — ¢ ,u(g—2,€—2)

The function ¢° (slowly-varying envelope of a plane wave) defined by

€ G e £
U (w,x,z) =€ "0 ¢ (w,—Q,z)
€

satisfies

. 21 .
48§¢8—|— (22— qu —|—AL¢ —|———,u(a:,€%)gb€> = 0.

Co Cpy €
e In the regime ¢ < 1, the forward-scattering approximation in direction z is valid
and ¢ = lim._,0 ¢° satisfies the [t6-Schrodinger equation 1]

2
2= d.d + Aﬂ/ﬁ—l— — B(, z)cﬁ =
Co O
with B(x, z) Brownian field E[B(x, z) B(x',2")] = v(x — ') min(z, 2'),
= [°. E[u(0,0)u(x, 2)]dz.

[1] J. Garnier and K. Sglna, Ann. Appl. Probab. 19, 318 (2009).



Wave propagation in the random paraxial regime

e Consider the time-harmonic form of the scalar wave equation (£ = (x, 2))

2

(0% + AL )i+ ‘;’—2 (1+ (e, 2))a = 0.
0

Consider the paraxial regime “A\ < . < L”:

w

W= =, wlx, z) = e p(=

The function ¢° (slowly-varying envelope of a plane wave) defined by

c 'L wz Ag w
0 (w, e, 2) = e =0 ¢° (w, =, 2)
£

satisfies ,
Te . Te Te 1 Te
20247 + (mﬂang +ALP + (=) d ) —0.
Co ch € €

e In the regime ¢ < 1, the forward-scattering approximation in direction z is valid

and ¢ = lim._,0 ¢° satisfies the [t6-Schrodinger equation 1]
iﬂ
2w
with B(x, z) Brownian field E[B(x, 2) B(x', 2')] = v(x — ') min(z, 2'),
V() = [ Elu(0,0)u(w, 2)|dz.

[1] J. Garnier and K. Sglna, Ann. Appl. Probab. 19, 318 (2009).

dd = A | pdz + ;—wggodB(m,z)
Co



Wave propagation in the random paraxial regime

e Consider the time-harmonic form of the scalar wave equation (€ = (x, 2))

2

(02 + AL)a+ —(1 + p(zx, 2))a = 0.
€0
Consider the paraxial regime “A < [ < L”:
w 3 L 2
w—>€—4, u(x,z) — ¢ 'u(g_2’5_2)

The function ¢° (slowly-varying envelope of a plane wave) defined by

w2 x
0 (w, e, 2) = e =0 ¢ (w, =, 2)
£

satisfies

. 21 .
48§¢8—|— (27,— qu —|—AL¢ —|———,u(a:,€%)gb€> = 0.
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e In the regime ¢ < 1, the forward-scattering approximation in direction z is valid

and ¢ = lim._,0 ¢° satisfies the [t6-Schrodinger equation 1]

do = @Amdz i —quB( 2) — wQ'V(O)quz

2¢o 8¢
with B(«, z) Brownian field E[B(x, z) B(x', 2')] = v(x — ') min(z, 2’),
= [7. E[u(0,0)u(z, 2)]dz.

[1] J. Garnier and K. Sglna, Ann. Appl. Probab. 19, 318 (2009).




e We introduce the fundamental solution G’(w, (z, 2), (x0, 20)):

dG = A Gdz + 22—“’(; o dB(z, 2)

2w Co
starting from G’(w, (z,z = 20), (®0, 20)) = 6(x — o).
e In a homogeneous medium (B = 0) the fundamental solution is

ex iw|e—xg|?
A P\ 2¢olz=20]

Go(w, (z, 2), (X0, 20)) =

2imcy lz—z0]
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e We introduce the fundamental solution G’(w, (z, 2), (x0, 20)):

A ’LCO

starting from G’(w, (x,z = 20), (xo, zo)) = §(x — xo).
e In a homogeneous medium (B = 0) the fundamental solution is

iw|e—mxg|?

é’o (w, (a:, z), (zco, Zo)) _ exXp ( 2¢q|z—20]| ) .

2T Co lz—z0]

e In a random medium, by Itd’s formula

E[G(w, (x, 2), (xo, zo))] = Go (w, (x, 2), (xo, zo)) exp ( — 1(0)w|z — 20 ),

2
8c§

where y(x) = [7°_E[u(0,0)u(x, 2)]dz.
e Strong dampmg of the mean wave.

— Reverse Time imaging and Kirchhoff migration fail.
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e In a random medium, by Itd’s formula

A

E[G(w, (x,2), (T0, 20)) G (w, (', 2), (0, 20))]

_ éo (w, (w7 Z), (wO, ZO))GO (w, (CB/, Z), (CUO; ZO)) exp ( . ’72(% — w’)w |Z — ZO|)7

2
4cg

where v (x fo v(xs)ds (note y2(0) = 0).
e The ﬁelds at nearby points are correlated.
e Same results in frequency: The fields at nearby frequencies are correlated.

—> One should migrate local cross correlations for imaging.
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e In a random medium, by Itd’s formula

A

E[G(w, (x,2), (20, 20)) G (w, (&', 2), (0, 20))]

_ Go (w7 (w’ Z), (w07 ZO))GO (w7 (.’L'/, Z), (-’L'O; z0>> exp < . 72(% — w;l)c(g ’Z — ZO’))

where 2 (x fo v(xs)ds (note y2(0) = 0).
e The ﬁelds at nearby points are correlated.
e Same results in frequency: The fields at nearby frequencies are correlated.

—> One should migrate local cross correlations for imaging.

e In a random medium, by Itd’s formula, one can write a closed-form equation for the
n-th order moment.
Depending on the statistics of the random medium, the wave fluctuations may have

Gaussian statistics or not [1].

[1] J. Garnier and K. Sglna, to appear in Comm. Part. Differ. Equat.



Application: Imaging below an *“overburden”
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Imaging below an “overburden”

From van der Neut and Bakulin (2009)
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Imaging below an overburden

I
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Array imaging of a reflector at y. &5 is a source, &, is a receiver.
Data: {u(t,@,;&s),r=1,...,Ny,s=1,..., Ng}.

If the “overburden” is scattering, then Kirchhoff Migration does not work:

Ny Ng
Tien(G7) = 3 u(T (&, §°) + T(F°, &), & &)

r=1 s=1
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Numerical simulations
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Computational setup Image obtained with Kirchhoff Migration

(simulations carried out by Chrysoula Tsogka)
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Imaging below an overburden

&5 is a source, &, is a receiver. Data: {u(t,&,;@s),r=1,...,Ny,s=1,..., Ns}.

Image with Kirchhoff Migration of the cross correlation matrix:

Ny
I(§°) = Y C(T(@.9°)+T(F°, &), &, ),
r,r’'=1
with
Ns
C(r, @r, &) = Z/u(t,fﬁr,fs)u(t + T, & Ls)dt rr =1,...,N;
s=1
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Numerical simulations
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Analysis in randomly scattering media

e Does the cross correlation imaging function give good images in scattering media 7
— It is possible to analyze the resolution and stability of the imaging function in
randomly scattering media:

- analysis in the random paraxial regime,

- analysis in the randomly layered regime,

- analysis in the radiative transfer regime.

e General results:

Imaging function is stable provided the bandwidth is large enough and/or the source
array is large enough.

Resolution is essentially independent of the size of the source array.

e Detailed results: Clarify the role of scattering.

- in the random paraxial regime, scattering helps (it enhances the angular diversity of
the illumination).

- in the randomly layered regime, scattering does not help (it reduces the angular

diversity of the illumination).

[1] J. Garnier and G. Papanicolaou, Inverse Problems 28 075002 (2012).



Imaging below an overburden: analysis in the paraxial regime
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e Assume that:

- the source aperture is b and the receiver aperture is a.

- there is a point reflector at = (y, —Ly).

- the covariance function () = [ E[u(0,0)u(x, 2)]dz can be expanded as
A(@) = 1(0) — Fala|? + o(|z[?) for small |].

v(0)wi L
2

- scattering is strong: > 1 (— mean wave is damped).

Edinburgh September 23, 2013



Imaging below an overburden:
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Imaging below an overburden:
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analysis in the paraxial regime
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Imaging below an overburden: analysis in the paraxial regime

e The imaging function for the search point 4 is

Ny
2(G°) = — > C(T(&§°)+TF°, &), &, &)
1

r,r/ =

1
Ny
e The imaging function is statistically stable (Ao < b < L).

Mo(Ly — L)

Aeff
Here: g is the carrier wavelength, B is the bandwidth.

. . C
. The range resolution is EO.

e The lateral resolution is

e SiNcCe deff |rand> Geff |nomo, this shows that scattering helps.
- physical reason: scattering enhances the angular diversity of the illumination.
- effect already noticed for time-reversal experiments, in which the recorded waves are

time-reversed and sent back in the real medium.
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Randomly layered medium

e Random medium model (£ = (x, 2)): 10=
1 1

=@ ~ g THe) 5

co is a reference speed,
((z) is a zero-mean random process.

-10 -5 0 5 10
X

e Consider the time-harmonic form of the scalar wave equation (& = (x, 2))

2
W

(02 + A1)t + 6—2(1 + ()i =0
0
Consider the scaled regime “l. <K A < L”:
W z
— — — u(=
w=— ) = ()

The moments of the random Green’s function are known in the limit € — 0 [1].

[1] J.-P. Fouque, J. Garnier, G. Papanicolaou, and K. Sglna, Wave propagation ..., Springer, 2007.



Imaging below an overburden: analysis in the layered regime

O_ S
re—

_Ly” ?j'

e Assume that:
- the source aperture is b and the receiver aperture is a.

- there is a point reflector at ¥ = (y, —L,).
- the localization length Lioc is smaller than L (strong scattering, mean wave is

damped):

4CO o°
Lioe = —, ’y:/ Eln(0)u(z)|dz
-  E(O)u(z)
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Imaging below an overburden: analysis in the layered regime

b b
beyy bets
: O ) Q-o-o-ogo-o-o-o-o-o-o-o-p-o-o-o-qo
\ \\? / \\,\ \\,\/’/ / /\//
\\ // L \ \\/\\ A \\\ /// A //\// / L
\\ // \\/\\\\/\ /\l///\’/
A—A—A—A\—{A—A—A—A—A—A/—’A—A—A—A AADA D AN DA DA DDA A
\./ \/
Homogeneous medium Randomly layered medium
Effective source aperture:
2 2
beff =b beff — 4-Lloc-L (<< b )

Edinburgh September 23, 2013



Imaging below an overburden: analysis in the layered regime
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Imaging below an overburden: analysis in the layered regime

e The imaging function for the search point 4 is

Iy £T7g5)+7-(gsafr’)7£r7£r’)

N2

’I"’I"—

e The imaging function is statistically stable (Ao < b, L).

-~ B*L
AolLy L). The range resolution is © (1 + —— )1/2.
4(4{)0.[/]_0(3

e The lateral resolution is
Aoff B

® Since deff |rand< Geff |nomo, this shows that scattering does not help.
- physical reason: scattering reduces the angular and frequency diversity of the

illumination.
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Further results

e Use of other imaging functions based on cross-correlations (or Wigner distribution

functions).

e Use of ambient noise sources.

One can apply correlation-based imaging techniques to signals emitted by ambient
noise sources (increasingly popular in geophysics, “seismic interferometry”).

— Travel time tomography (surface wave tomography since 2005, body waves more
recently).

— Volcano monitoring (early warning of the eruption of Le Piton de la Fournaise in
october 2010).

— Passive reflector imaging.

e Use of higher-order correlations.
One can apply imaging techniques based on special fourth-order cross correlations.

Useful when the statistics of the wave fluctuations is not Gaussian.
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Passive sensor imaging of a reflector

e Ambient noise sources (o) emit stationary random signals.
e The signals (u(t,&,))r=1,... n, are recorded by the receivers (&,),=1,... N, (A).
e The cross correlation matrix is computed and migrated:

S — —»S — —
E CT Y )+T(w7“7y )7537“7387“’)
r,r’ =
1 T
. — — — —
with  Cr(7,&,, %) = —/ u(t + 7, &, )u(t, &,)dt
T 0
1
0.5 signal recorded at X,
0
-0.5 : : :
0 100 200 300
t
o 1 .
| | signal recorded at x
a2 3 ¢ : oMWMWMMW\/WNMW =
A | | —05 L I L
A e 0 100 200 300 §
AX
1
coda correlation X X
50 100 05
YA _150 _100 _ 80 85 90 95 100 105 110 115 120

Provided the ambient noise illumination is long (in time) and diversified (in angle and
frequency): good stability [1].

[1] J. Garnier and G. Papanicolaou, SIAM J. I'maging Sciences 2, 396 (2009).



Conclusions
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e In scattering media one should migrate well chosen cross correlations of data, not

data themselves.

e Method can be applied with ambient noise sources instead of controlled sources.

e Scattering can help ! Already noticed for time-reversal experiments, but far from

clear in imaging problems.
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Perspectives

e Space surveillance and imaging with airborne passive synthetic aperture arrays.
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